
Polymer Bulletin 17, 279-284 (1987) Polymer Bulletin 
�9 Springer-Verlag 1987 

The  e f fec t  of  p o l y d i s p e r s i t y  on t he  a n a l y s i s  
of op t i ca l  t r a c e r  d i f f u s i o n  e x p e r i m e n t s  
Ih Intramolecular interference 

Brian Hanley 

449 A2 Newgate Court, Bensalem, PA 19020, USA 

Summwv 
The effect of intramolecular interference on the wave vector dependence of the 

average tracer diffusion coefficient in a dynamic light scattering experiment from an 

optically matched ternary system in which the tracer polymer reptates is examined using 

a Schulz molecular weight distribution and the Debye interference function for random 

coils. The average tracer diffusion coefficient in a system in which the tracer is 
polydisperse is shown to vary continually with q. This variation can be quite substantial 

for moderate polydispersities even in the regime qRo(n) < I. It is shown that a two 
parameter linear fit of ~') versus q2 data will have a negative intercept and that the 

apparent q power law dependence of the average decay rate will be greater than 2. 

Introduction 
In a previous paper it was shown that tracer polydispersity can have a significant 

effect upon the shape of the autocorrelation function, g(t), and upon the extraction of the 
average decay rate, (r~, in a ternary isorefractive tracer diffusion experiment at higher 
concentrations of the "invisible" matrix polymer (1). A number of investigators have 
observed this marked deviation from single exponential behavior at higher "invisible" 
polymer concentrations (1, 2, 3). The analysis in this earlier paper was carried out 
assuming that the particle form factor, P(q, M), for an individual chain was unity. We 
examine here the effect of intraparticle interference on the average decay rate for a 
Schulz distribution of random coil tracer polymers diffusing via reptation. 

Results and Discussion 
In principle, the intensity of light scattered from ternary systems composed of two 
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compatible polymers and a solvent chosen to have the same refractive index as one of 
the two polymers, with the other "visible" polymer present in only small amounts, should 
be analogous to light scattering from a dilute binary solution. In particular, if the tracer 
species is sufficiently diIIute, then the intensity of scattering from tracer species "i" at wave 
vector q should be proportional to the product ciMiP(q, MI), where c i is the concentration 
of species 'I", M i is its molecular weight, and P(q, Mi) is the intraparticle interference 
factor (form factor) associated with a chain of molecular weight M i. Although the intensity 
of scattering from an isorefractive ternary solution follows directly from the infinitely dilute 
binary solution analog, the dynamics of the decay of the autocorrelation function can be 
substantially altered by the fact that the molecular weight dependence of the tracer 
diffusion coefficient becomes dronger as the concentration of the "invisible" matrix 
polymer is increased. For the ternary solution light scattering experiment, where the 
"visible" tracer is present only in small quantity, we may write the expression for the 
autocorrelation function, g(q, t), as (assuming that the Schulz distribution adequately 
describes the molecular weight distribution of the tracer): 

M z+1 exp[-yM ] exp[ ~q2t/IVlV ] P(q, M) dM 
~0 

g(q, t) = (I) 

I~M z+t exp[ -yM ] P(q, M) dM 

where we have assumed that, for a monodisperse sample, _r = (xq21M v. In the following 
discussion, only the reptation case will be considered, i.e. v = 2. 

The average decay rate of the autocorrelation function can be found by 
differentiatng equation (I) with respect to time, and then setting t=0: 

(zq 2 exp[ -yM ] P(q, M) dM 

<r~(q) = (2) 

MZ+ I exp[ -yM ] P(q, M) dM 
~0 
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If we assume that the tracer molecules adopt their random flight configurations, 
then the form factor, P(q, M), is given by the Debye relationship (4): 

P(q, M) = {2/(q(R0>)4i{exp[ - (q(R0>)2 ] + (q(R0))2_ I} (3) 

where (R0) = aM I/2 is the power law relationship for the root mean square radius of 
gyration for mo, q o d ' , . ~  random coils. The integ"als of equation (2) ere easy to 
perform with this form factor and the final result is: 

{z+ 1}{z+ {qRg(n)}2} 2 [zZ'l § {{~g(n) }2{z-2) -zHz+ {~g(n) )2lz'~ ] 
D(q)lD(q=0) = {z-1}{z-2} z--Z'~ {{qt:]g(n)}2--~ l}{z+ (t:lRg (n) }2}----'---z (4) 

where we have defined D(q) = (FXq)/q 2 and R0( n] = (R0)(Mn) = aMn I12 (by this, we do not 
mean the molecular weight power law expression derived through a power law fit using 
the number average molecular weight of a dis~ibuted polymer, but rather the power law 
expression valid for absolutely monodisperse polymers evaluated at the number 
average molecular weight of the dis'oibuted polymer). Note that if (FXq) - q2 then (F)/q 2 
should be independent of q. The variation of the average ~'acer diffusion coefficient with 
q for various polydispersities is shown in Figure I. 

Often it is implicitly assumed that there is a q2 dependence to the average decay 
rate in a tracer experiment; "the" ,~acer diffusion coefficient is taken to be the slope 
calculated from a lineer fit of available (l') versus q2 data. It is clear from equation (4) 
and from Figure I that there is no simple power law relationship between the wave 
vector, q, and the average decay rate, (FXq). However, for reasonably monodisperse 
~acer samples over a res~icted range of qR0(nl (0 < qJ~0{nl < 0.7) the variation of the 
~'acer diffusivity with q is rather mild so that one might be justified in assuming that 
<F) - q2. The assumption is more questionable for somewhat higher polydispersities 
since there is a s~ong residual q dependence to the average tracer diffuslvity. 

The upward curvature in the (r) versus q2 data results in a negative intercept, 
rather than the expected intercept of zero, when this data is fit to a two parameter linear 
form, as demonstarted in Figure 2. Certainly, the magnitudes of the intercept and the 
slope depend upon the range of q~g[n] as well as upon the number of data points 
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The ratio of the average diffusion coefficient at ~ave 
vector q to the average diffusion coefficient in the limit 
P(q, M] ~ 1 {q ~ 0} for different polydisperalties as 
calculated from equation (4}. ~means, in this case, the 
radius of gyration calculated'from the equation for 
monodisperse pol~em, (R~ = alvl 1/2, evaluated for 
the number avor~ge molecul~/eight M n. 

included in the fit, so that the values for the slope and intercept calculated here represent 
perhaps the largest deviations to be expected. Figure 2 also shows that the deviation 
from the simple q2 power law dependence is not very evident to the eye with this type of 
plot if (q~g(n]) < 0.7. 

The implications for this type of q dependence to the average decay rate due to the 
coupling between intramolecular interference and polydispersity might be important in 
other types of tracer diffusion experiments performed at higher matrix polymer 
concentrations. For tracer light scattering experiments carried out in the high qRg 
regime in the presence of high concentrations of matrix polymer, hydrodynamic 
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Date. of Figure 1 plottedas (1) versus q2, nonneJzed such 
thet ~r~(q-O) = I. 25 data points wore used in each fit',,Hth 
q~,.,(nj e;dending from O to I. The fitting peraneters 
proVo~bly represent a good estimate of the magnitudes of 
the slope md intercept to be expected for a given 
polydispersity. 

screening might change the predicted q dependence of the average decay rate from q2 
to q3 or q4 for monodisperse tracers (5, 6). The absolute value of the higher q power law 
exponent might be masked by effects such as those discussed above, giving rise to 
some nonintegral value of the power law exponent which falls between 3 and 5 (see 
Figure 3). 
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FIGURE 3 
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Dota of figure 2 plotted versus q~(n). No murnpUon h~ 
been rnade about the q depende~e o~ the d~ta. Note th~ 
the "apperent" q po~ver law expmer~ is non - ~eFal, 
~'eater then 2 end relies ~h polydbpmity. 
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